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Conceptual Summary for Mechanics 
 
 

This is meant to be a quick and dirty summary of the conceptual points presented during 
the first semester in AP Physics (that is, while we were studying Classical Newtonian Physics).  
It is probably not definitive, but it hits most of the high points.  Few equations are being used 
because this year’s test is going to be a prose special, and formulas are not going to be as 
important as understanding the underlying physics. 

 
 

Kinematics: 
 

--if the acceleration in a particular direction is constant, there are relationships that are always 
true—the kinematic relationship; 

 
--acceleration is the rate at which velocity changes with time; 
 
--velocity is the rate at which position changes with time; 

 
--average velocity is the one velocity that, if traveled at over the time interval in question, will 

take you through the prescribed displacement over that period of time; 
 
--average acceleration is the one acceleration that, if applied over the time interval in question, 

will change the body’s velocity in the prescribed manner; 
 
--you can have a constant velocity in one dimension and not in another—2-d projectile motion 

is a good example with  constant because there is typically assumed to be no acceleration 

in the x-direction (unless the body is wearing a jet pack or there is drag) and  not constant 
as the acceleration of gravity (and possibly drag) acts in the y-direction; 

 
 

Newton’s Laws: 
 

--the net force acting on an object in a particular direction is proportional to the acceleration in 
that direction, with the proportionality constant being the body’s mass; 

 
--mass is a relative measure of a body’s inertia, its resistance to changing its motion; 
 
--force is a vector; 
 
--a free body diagram identifies all the forces acting on a body; 
 
--one axis on a f.b.d. should be defined along the line of the body’s acceleration; 
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--there are four naturally occurring forces in the Newton’s Second Law pantheon, tension, 
gravity, normal and friction (and a fifth, the push-me, pull-you if you want to include the 
possibility of a non-descript force that is there but you don’t know its origin); 

 
--tension forces (T or ) provided by strings or ropes always act away from the body feeling 

their effect; 
 
--gravitational forces (mg or ) provided by the earth or other celestial body always act 

downward (toward the center of the body); 
 
--normal forces (N or ) are forces of support and always act perpendicularly outward away 

from the body providing the force; 
 
--frictional forces come in two types, static and kinetic; 
 
--static friction (  or ) is produced when two bodies are up against one another and one of 

the bodies tries to move relative to the other—it is a consequence of the atomic interaction 
between the two body’s surfaces; it is a kind of drag effect that holds the bodies stationary 
to one another; 

  
--the maximum static frictional force is proportional to the normal force between the two 

bodies, with the proportionality constant being the coefficient of static friction ( ); 
 
--it is possible to have a system in which there is static friction, but the static friction is not 

maximum; 
 
--kinetic friction (  or ) is produced when two bodies are up against one another and are 

moving (sliding) relative to the other—it is a consequence of the atomic interaction between 
the two body’s surfaces; 

  
--with kinetic friction, if one of the bodies is station (a tabletop or a wall) and the other is 

sliding relative to it, kinetic friction will act as a drag, will be opposite the direction of the 
relative motion, and will tend to slow the body down; 

  
--in all cases, the direction of kinetic friction is opposite the direction of the relative motion 

between the two bodies 
 
--the maximum static frictional force is proportional to the normal force between the two 

bodies, with the proportionality constant being the coefficient of static friction ( ); 
--the direction of static frictional force on a body is opposite the direction the body would 

accelerate if it broke loose and moved; 
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--a spring can produce a force on a body shoved up against it (or attached to it) if the spring 
and body are displaced from the system’s equilibrium position (normally characterized by x); 

  
--the force a spring provides to an attached body will be proportional to the displacement of 

the spring, or , where k is the spring’s spring constant; 

 
--a spring’s spring constant k is defined as the amount of force required to elongate or 

compress the spring per meter; it is always positive and its value tells you how stiff the 
spring is; 

 
--forces or their components that act along (or opposite) the line of motion motivate a body to 

accelerate so as to pick up speed or slow down (they change the magnitude of the body’s 
velocity vector); 

  
--forces that act perpendicular to the line of motion motivate a body to accelerate so as to 

change the direction of the velocity vector; 
 
--forces that change the direction of the velocity vector are called centripetal forces; 
 
--a centripetal force is not a new kind of force, it is not like tension or gravity or normal or 

friction; 
 
--the word centripetal is used to identify one or a combination of the four normally occurring 

forces in a system (tension, gravity, etc.) or their components, that is/are doing a special 
thing—that is/are pushing the body out of straight-line motion; 

 
--forces that act centripetally, being perpendicular to the motion do no work (that’s why they 

don’t make bodies pick up speed or slow down . . . ); 
 
--on a f.b.d., the centripetal direction will always be along a line between the body and the 

center of the arc upon which the body is moving; 
 
 
 
Energy considerations: 
 

--the work done on a body by a force as the body moves some distance is mathematically 
defined as the dot product of the force and displacement vector, or  (that is, it’s 
the component of force along the line of displacement times the displacement, with a 
positive or negative sign thrown in to identify if the work is increasing the body’s speed or 
slowing it down); 

 
--if a force field is not constant, or if the force does not follow a straight-line path, determine 

the work the field does as a body moves from one point to another requires a modification 

!
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of that dot product shown above; that modification is: , where  is a 

differential bit of the path traversed; 
 
--positive work is associated with putting energy into a system, motivating a body to increase 

its speed; negative work is associated with taking energy out of a system, motivating a body 
to decrease its velocity; 

 
--when a non-zero amount of work is done on a body, the body’s kinetic energy (which is to 

say, it’s velocity) changes (this is the work/energy theorem, or ); 
 
--if the amount of work a force field does on a body as the body moves through the field is 

path independent, the field is said to be conservative; 
 
--the work done by friction is non-conservative; 
 
--the work done by gravity near the surface of the earth, and by an ideal spring, is 

conservative; 
 
--because work done in the a conservative force field isn’t predicated on the path the body 

takes in getting from its start to end point, a function associated with the force field can be 
derived that is end-point dependent and that allows the calculation of the work done by the 
field as the body moved between those two points; such a function is called a potential 
energy function and it’s defined by ; 

 
--put a little differently, a potential energy function is a contrived mathematical function with 

one use and one use only, to allow the user to determine the amount of work the function’s 
associated force field does as a body moves from one point in the field to another; 

 
--as potential energy functions are defined  and work quantities are defined as 

, the relationship between a known force and its potential energy difference is 

seen to be ; 

  

--  is the relationship used to derive the potential energy function that goes 

with a particular force function, where the integral’s limits go from where the force is zero  
(if such a point exists) to an arbitrary point in the field; 

 
--the derived gravitational potential energy function when close to the earth is mg; 
 

--the derived spring potential energy function is , where k is the spring constant and x is 

the spring’s displacement from its equilibrium position; 
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--taking and manipulating, it can be seen that the relationship between a 

known potential energy function and it’s unknown force function is , where the del 
operator  is just the spatial derivatives of U taken in the various directions, times their 
associated unit vectors (you’ll only have to worry about this in one dimension); 

  
--in one-dimension using cartesian coordinates, the above relationship becomes 

; 

  
--in one-dimension using polar spherical coordinates, the above relationship becomes 

;  

--the bottom line is that the magnitude of a force field F at a particular point is equal to the 

spatial rate-of-change of the field’s potential energy function  evaluated at the point, 

with a minus sign placed out in front; 
 
--the work/energy theorem can be manipulated into the modified conservation of energy 

relationship , which is nice because each 

bailiwick tells you what to look for . . . (i.e., says “is the body moving at the 

beginning of the interval . . . if no, write 0, is yes, write ,” etc.); 

 
 

Momentum: 
 

--a force  applied over a period of time  will exert an impulse  on the object that will 
change the object’s momentum such that , where the momentum vector ; 

 
--put a little differently, a body’s momentum gives you a feel for whether a relatively large or 

small force would be required to bring the body to rest in a given (smallish) amount of time; 
 
--an internal impulse is an impulse that is generated by the interaction of the pieces of the 

system (example: impulses generated by the forces produced when two balls hit one 
another); 

 
--in a particular direction, if all the forces acting on a system generate internal impulses, then 

the net momentum of that system in that direction will be conserved (will not change with 
time)—that means the sum of the momenta (signs included) in that direction at the 
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beginning of an interval will equal the sum of the momenta in that direction at the end of the 
interval; 

 
--put a little differently, if there are no externally impulses in a particular direction acting over 

a time interval (or if the external forces are small and the time interval is, likewise, small), 
momentum will be conserved in the direction through the interval; 

 
--momentum can be conserved in one direction and not in another (projectile motion is a good 

example—no external impulse in the x-direction while gravity acts as an external impulse in 
the y-direction); 

 
-- in one-dimensional collisions where objects can respond freely, even if a small external 

impulse is present over the time interval of the interaction, the net momentum just before the 
collision will equal the net momentum just after the collision—this is referred to as 
momentum being conserved through the collision; 

 
--an inelastic collision is an “normal” collision in which energy is not conserved; 
 
--a perfectly inelastic collision is an elastic collision (energy not conserved) in which the two 

objects become one after the collision); 
 
--an elastic collision is one in which energy is assumed to be conserved; 
 
--note: because collisions usually occur quickly, potential energy doesn’t generally change 

appreciably over the collision’s tiny time interval so when energy is conserved in an elastic 
collision, it is kinetic energy that is conserved through the collision); 

 
--it is not uncommon to have problems in which you have to decide when you can 

legitimately use energy considerations and when you can legitimately use momentum 
considerations; 

 
 
 

Rotational Motion: 
 

--for every translational parameter, there is a rotational parameter:  that means: 

; 
 
--a point r units away from a fixed point, moving with angular velocity  about that fixed 

point, will have an translational velocity that is proportional to the distance out, or ; 
 
--a point r units away from a fixed point, moving with angular acceleration  about that fixed 

point, will have an translational acceleration that is proportional to the distance out, or ; 
 

x ⇒θ (angular position);   v ⇒ω  (angular velocity);   a ⇒α (angular acceleration);   
m ⇒ I (moment of inertia);   

!
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--the translational velocity of every point on a rolling object is different, but the angular 
velocity about each of those points will be the same (that is the beauty of rotational 
parameters in a rotating setting);  

 
--the instantaneous translational velocity of the contact point on a rolling object is zero; 
 
--the four points listed above are the justification for the observation that for a rolling object 

of radius R, the velocity v of the body’s center of mass will be related to the angular velocity 
of the body about its center of mass by  ; 

 
--and by the same logic, the acceleration of the body’s center of mass is related to the body’s 

angular acceleration as ;  
 
--rotational kinematics only is applicable when the angular acceleration of a system is 

constant (just as was the case with translational kinematics–constant acceleration was 
required); 

 
--rotational kinematics work just like translational kinematics—draw a picture; put in the 

parameters you know; identify what you’re looking for; find a rotational kinematic equation 
that has what you know and what you’re looking for; 

 
--an angular velocity vector (or any rotational vector) has a direction defined perpendicular to 

the plane in which the action occurs (example: if the motion is in the x-y plane, the 
“direction” of the angular velocity or torque vectors will be in the z-direction, or using unit 
vector notation, in the  direction, positive or negative depending . . . see next entry); 

 
--the kind of rotational motion problems you will deal with in this course are technically one-

dimensional in that the action happens in one plane only (usually the x-y plane)—so 
although you will have to include the + and – signs with angular velocities and torque 
quantities (both vector quantities), you will not need to include the  unit vector when 
dealing with those vectors as everything will have a  unit vector attached to it; 

 
--positive or negativeness of an angular velocity vector is defined by the right-hand rule: if 

your right-hand circles in the direction of motion, and if it is in the counterclockwise 
direction (or instance), your thumb will point out of the page in the  direction.  This 
angular velocity vector would be termed positive.  If the right-hand’s rotation placed the 
thumb pointing into the page in the  direction, the vector would be denoted as negative; 

 
--the rotational counterpart of force is torque; 
 
--the torque about a point due to a force is related to the distance out from the point (defined 

by a position vector) and the perpendicular component of the force vector producing the 
impetus;  
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--put differently, the torque about a point due to a force is related to the size of the force 
producing the rotational impetus, the distance out from the point (defined by a position 
vector) and the sine of the angle between the force vector and the position vector . . . in 
other words, the cross product of  and ;  

 
--for equilibrium situations (rigid body problems), the sum of the forces in any direction must 

equal zero and the sum of the torques about any point must equal zero; 
 
--for situations in which there is rotation but no translation, the net torque acting on a body 

will be proportional to the angular acceleration of the body, with the proportionality 
constant being the rotational inertia of the body (the body’s moment of inertia I)—this is 
essentially Newton’s Second Law, rotation style; 

 
--a body’s rotational inertia, or moment of inertia, is related to the body’s mass and how its 

mass is distributed about the axis of interest; 
 
--the moment of inertia about a fixed point for a point mass r units out is ; 
 
--the moment of inertia about an axis through a body’s center of mass will be a minimum; it 

will increase as the axis moves away from the center of mass; 
 
--if you know the moment of inertia about an axis through a body’s center of mass, and you 

want the moment of inertia about an axis parallel to that known axis and a distance d units 
from it, the parallel axis theorem will allow you to determine that new moment of inertia; it 
will be ; 

 
--for situation in which there is both rotation and translation, the translational version of 

N.S.L. is applicable and the rotational version of N.S.L is applicable independent of one 
another; 

 
--the link between the rotational and translational N.S.L. relationships is usually ; 
 
--translating and rotating problems can either be approached from the perspective of what’s 

happening to the body’s center of mass (the body’s center of mass is translationally 
accelerating while its mass is angularly accelerating about the center of mass) or from the 
perspective of a pure rotation about the contact point (which is instantaneously stationary); 

 
--the basics of energy considerations in rotating systems is the same as before; it is still true 

that over any interval, ;  
 

--rotating objects have rotational kinetic energy equal to ; 

 
--there are no rotating potential energy functions; 
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--you can determine the work a torque does as a body rotates through an angular displacement 

using the rotational counterpart to ; that is, , where the sign depends upon 
whether the torque is in the same direction as the angular displacement or opposite the 
direction of the displacement; 

 
--unlike N.S.L. situations, you can have rotational and translational energy expressions all in 

one equation (put a little differently,  and  have the same units); 

 
--a torque  applied over a period of time  will produce a rotational impulse  on the 

object that will change the object’s angular momentum L such that , where the 
angular momentum vector ; 

 
--(note that if the body is a point mass moving with translational momentum , the angular 

momentum vector can be determined using ); 
 
--put a little differently, a body’s  angular momentum gives you a feel for whether a relatively 

large or small torque would be required to bring the rotating object to rest in a given 
(smallish) amount of time; 

 
--just as the net force acting on an body is equal to the time rate of change of the body’s 

momentum ( ), the net torque acting on a body is equal to the time rate of change of 

the body’s angular momentum ( ); 

 
--if there are no externally, torque-related impulses acting over a time interval (or if the 

external torques are small and the time interval is, likewise, small), angular momentum will 
be conserved through the interval; 
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